

АВТОМАТИЗИРОВАННАЯ СИСТЕМА РАДИАЦИОННОГО КОНТРОЛЯ

Феникс

СУДОВОЕ ОБОРУДОВАНИЕ РАДИАЦИОННОГО КОНТРОЛЯ

СОДЕРЖАНИЕ

СИСТЕМА РАДИАЦИОННОГО КОНТРОЛЯ «ФЕНИКС» 2	БДВВ-16Д Блок дискретного ввода
ПОСТАВКИ СРК «ФЕНИКС» 4	УДГП-01 Установка контроля протечек парогенератора по N-16
ПЕРВАЯ СРК «ФЕНИКС», 2005 6	БДПН-100 Блок детектирования плотности потока нейтронов
ХОДОВЫЕ ИСПЫТАНИЯ ЛЕДОКОЛА «АРКТИКА» 7	УДИ-1Б Радиометр йода
ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ВЕРХНЕГО УРОВНЯ	УДГП-01 Установка радиометрическая
СХЕМА СРК «ФЕНИКС»	БАС-1С Блок аварийной сигнализации
ABTOMATU3UPOBAHHOE PAGOYEE MECTO	УМФ-2000 Альфа-бета радиометр для измерения малых активностей 27
БОП-1М Блок обработки и передачи информациия	УИМ-МД Комплекс измерительный универсальный
ШКАФ КОММУТАЦИОННЫЙ	МКС-17Д «ЗЯБЛИК» Дозиметр-радиометр
УДГ-03Д Радиометр бета-излучающих газов	УЗС-01Д Считывающее устройство индивидуальных дозиметров
УДМН-100 Блок детектирования нейтронного излучения	ДКГ-05Д Индивидуальный дозиметр гамма-излучения
УДА-1АБ Радиометр аэрозолей	ДВС-02Д Индивидуальный дозиметр гамма и нейтронного излучения 36
ДБГ- С11Д Дозиметр гамма-излучения	ОБОРУДОВАНИЕ ПРОБООТБОРНЫХ ЛИНИЙ
РЗБА-09Д Установка контроля поверхностной загрязненности персонала . 18	СИСТЕМА ПИТАНИЯ СРК «ФЕНИКС»
УДГ-1Б Радиометр инертных газов	БСТД Блок сопряжения тяжелых дверей
УППВМ Установка для измерения параметров воздушного потока	

СИСТЕМА РАДИАЦИОННОГО КОНТРОЛЯ «ФЕНИКС»

COOTBETCTBYET:

- «Правилам классификации и постройки Морских Судов» 2015
- «Правилам классификации и постройки атомных судов и плавучих сооружений» 2012
- требованиям Российского Морского Регистра Судоходства (РМРС)
- СП РБ АС-2005 «Обеспечение радиационной безопасности при проектировании, строительстве, эксплуатации и выводе из эксплуатации атомных судов»
- классу 3Н согласно «Общим положениям обеспечения безопасности ядерных энергетических установок судов» НП-022-2000
- классу безопасности 3 согласно «Правил классификации и постройки атомных судов и плавучих сооружений» 2012

НАЗНАЧЕНИЕ:

- получение информации, подтверждающей, что судно находится в пределах безопасной эксплуатации
- обнаружение отклонения работы ядерной энергетической установки (ЯЭУ) от условий нормальной эксплуатации и передача информации в информационновычислительную систему судна и в управляющую систему технологической безопасности
- повышение эффективности и надёжности работы ЯЭУ за счёт раннего обнаружения дефектного технологического оборудования или нарушения его функционирования
- сигнализация о выходе параметров ЯЭУ УАЛ за пределы безопасной эксплуатации, оценка масштаба аварии, получение информации, необходимой для ведения работ по ликвидации последствий аварии и введения планов мероприятий по защите экипажа и населения

СРК ОБЕСПЕЧИВАЕТ КОНТРОЛЬ:

- радиоактивности теплоносителя первого контура реакторной установки (РУ), в том числе герметичности оболочек тепловыделяющих элементов
- радиационной обстановки в аппаратных РУ при прохождении и после окончания МПА
- протечек из первого контура РУ во второй контур с выдачей сигналов типа «сухой контакт» для формирования сигналов АСУ для управления отсечением текущего парогенератора (ПГ)
- (ИДК) членов экипажа группы А
- радиоактивных сред в оборудовании третьего контура РУ путем контроля:
 - объемной активности газо-воздушной среды, удаляемой из воды третьего контура;
 - мощности эквивалента дозы гамма-излучения от трубопроводов третьего контура, предназначенных для охлаждения оборудования РУ
- загрязненности радиоактивными веществами спецодежды, обуви и кожных покровов членов экипажа
- протечек из первого контура РУ в помещения контролируемой зоны (КЗ)
 путем контроля объемной активности газовоздушной среды
 в предполагаемых местах течи с выдачей сигналов типа «сухой контакт»
 в АСУ, используемых для управления отсечением защитной оболочки

- уровня загрязнения поверхностей помещений и оборудования УАЛ альфаи бета-активными веществами
- активности радиоактивных газо-аэрозольных выбросов во внешнюю среду, включая аэрозоли и пары I-131 с формированием данных о суммарной активности газоаэрозольных выбросов
- радиационной обстановки при выдаче с борта УАЛ твердых и жидких радиоактивных отходов (ТРО и ЖРО)
- мощности эквивалентной дозы гамма-излучения от плавсредств, находящихся вблизи судна
- нерадиационных параметров, влияющих на радиационную обстановку и вывод полученных данных на экраны мониторов
- постоянный радиационный дозиметрический контроль в помещениях судна путем контроля:
 - мощности эффективной дозы гамма-излучения;
 - мощности эффективной дозы нейтронного излучения
- СРК обеспечивает дистанционное управление продувкой чистым воздухом блоков детектирования, установленных в ветвях газо-аэрозольного контроля

ПОСТАВКИ СРК «ФЕНИКС»

ПЕРВАЯ СРК «ФЕНИКС», 2005

Cualuony koncentraly

HIII "Dosa" na

godpyso namento u considerale

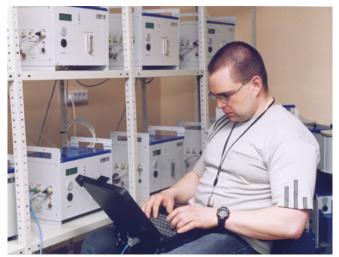
sa gracione 6 conponitivos cuite

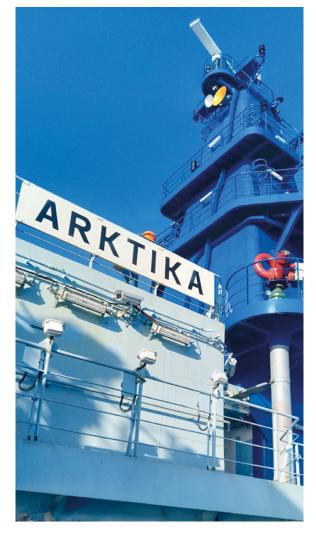
a/n "501cm hosedo".

Bam CPK "Openine" 6 nce satienti.

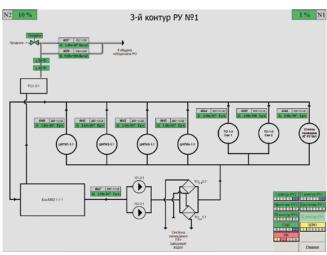
Briad 6 genemayio egary

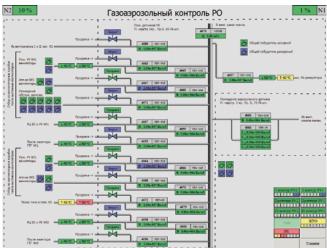
a/1 "501cm hoses"

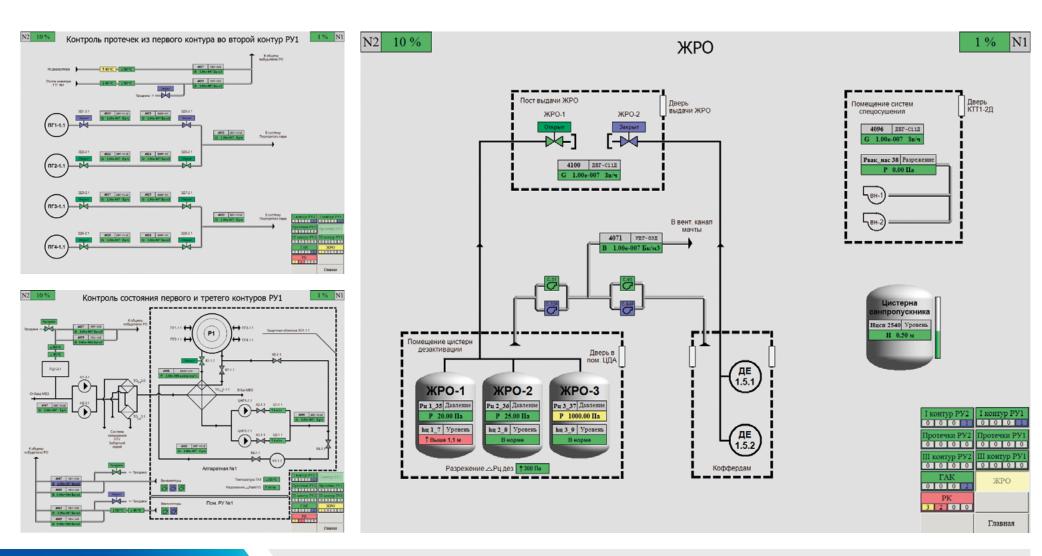

Bedyng it chego and horo genetice # E.F. your



ХОДОВЫЕ ИСПЫТАНИЯ ЛЕДОКОЛА «АРКТИКА»






ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ВЕРХНЕГО УРОВНЯ

8

СХЕМА СРК «ФЕНИКС»

Верхний уровень

Средний уровень

БОП-1М блок обработки и передачи информации

ШК коммутационный шкаф

Нижний уровень

УДГ-03Д

радиометр бета-излучающих газов

БДПН-100

блок детектирования плотности потока нейтронов

УДА-1АБ

радиометр аэрозолей

ДБГ-С11Д в коллиматоре

РЗБА-09Д

установка контроля поверхностной загрязненности персонала

УДГ-1Б

радиометр инертных газов

ДБГ-С11Д

дозиметр гамма-излучения

УППВМ

установка для измерения параметров воздушного потока многоканальная

БДВВ-16Д

блок

дискретного ввода

УДА-1АБ

с накопительной камерой

УДГП-01

установка контроля протечек парогенератора по N-16

УДМН-100

блок детектирования нейтронного излучения

УДИ-1Б

радиометр йода

У3С-01Д

считывающее устройство индивидуальных дозиметров

БАС / БАС-1с

блоки аварийной сигнализации

Система питания

ИСТР

изолирующий трансформатор

ИБП

источник бесперебойного питания

УВР

устройство ввода резерва

ЩП

щит питания

Оборудование пробоотборных линий

ПУПР

пульт управления побудителями расхода

Реле

расхода

ШУП

шкаф управления продувкой

Побудитель расхода

АВТОМАТИЗИРОВАННОЕ РАБОЧЕЕ МЕСТО

Автоматизированное рабочее место для работы оперативного персонала.

НАЗНАЧЕНИЕ

- организация работы оперативного персонала с ПТК ВУ АСРК в диалоговом режиме посредством мониторов, акустической системы, клавиатуры;
- прием и передача информационных пакетов по каналам связи стандарта Ethernet 100BASE-TX (Ethernet 100 Base-FX);
- выдача сигнализации о неисправности оборудования АСРК и превышении контролируемыми параметрами предупредительной или аварийной уставок в виде визуального и звукового сигнала;
- формирование и вывод на печать отчетной документации в виде таблиц и графиков по унифицированным формам.

COCTAB

Конструктивно APM выполнено в виде одного (двух) мониторного пульта, который может включать в себя:

- системный блок;
- монитор с диагональю 27", и соотношением сторон 16:9;

- клавиатуру металлическую антивандальную;
- источник бесперебойного питания;
- устройство защиты от перенапряжений с фильтром;
- разделитель сетей;
- автоматический выключатель.

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Питание: 220 В, 50 Гц
- Время питания от источника бесперебойного питания: не менее 20 мин
- Потребляемая мощность: не превышает 800 ВА

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

• Масса: не более 500 кг

Габаритные размеры

- Основное исполнение: 750×1345×1150 мм
- Исполнение 01: 1500×1345×1150 мм

БОП-1М

Блок обработки и передачи информациия

Обработка информации, поступающей от дозиметра ДБГ-С11Д, блоков УДМН-100, БДПН-100, радиометра газов УДГ-03Д, радиометра загрязненности РЗБА-04-04М

- Передача данных в информационную сеть
- Передача данных в переносной компьютер
- Хранение пороговых уставок и параметров блоков детектирования
- Питание и диагностика блоков детектирования
- Звуковая и световая сигнализация превышения порогов
- Отображение значений измеряемых величин на внешних устройствах индикации
- Архивирование данных в энергонезависимой памяти
- Управление блоками звуковой и световой сигнализации, информационными табло.

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

 Количество подключаемых блоков детектирования и устройств сигнализации/ отображения: до 20-ти

Диапазон рабочих температур

• минус 40 ÷ +50 °C

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Интерфейсы связи: RS-232, 2×RS-485, Ethernet
- Выдача аналоговых сигналов на базе интерфейса 4-20 мА (0-20 мА, 0-24 мА) (опционально)
- Питание: 220 В, 50 Гц
- Релейный выход: до 3 шт.
- Релейный вход

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

• Степень защиты: IP65

Габаритные размеры, масса

• 298×220×114 мм, 5 кг

Сигнализация

- Звуковая сигнализация: 80 ÷ 100 dB на расстоянии 1 м
- Световая сигнализация: зеленый, желтый, красный
- Внешний блок сигнализации БАС/БАС-1 с
- Отображение измеренных величин на внешних устройствах индикации:
 - блок индикации БИ-2
- информационное табло

Нормативные документы

- Сертификат в системе сертификации ОИАЭ
- Класс безопасности 3H, 4H в соответствии с HП-001-15, HП-016-05, HП-033-11

Стандарты

• 9MC: M9K 61010, M9K 61000-6-2

Сейсмика: IEC 60980

ШКАФ КОММУТАЦИОННЫЙ

Организация обмена информацией между оборудованием нижнего уровня и оборудованием верхнего уровня Феникс.

НАЗНАЧЕНИЕ

- Обмен информацией между оборудованием нижнего уровня и оборудованием верхнего уровня Феникс по каналам связи стандарта Ethernet (протокол IEEE 802.3).
- Шкаф может быть использован как составная часть информационно-измерительной системы и представляет собой коммутационное (сетевое) оборудование.
- Время готовности к работе: не превышает 1 мин.
- Время непрерывной работы: не менее 24 ч. Обеспечивает возможность как круглосуточной, так и сменной работы с учетом проведения технического обслуживания. Шкаф обеспечивает коммутацию линий связи, организованных на базе интерфейса Ethernet.

Шкаф коммутационный обеспечивает работу подключаемых устройств:

- 100BaseTX (витая пара cat. 5e) не менее 40 линий;
- 100BaseFX (оптоволоконный кабель) не менее 4 линий.
- Электропитание шкафа осуществляется от однофазной сети переменного тока напряжением 220 В, частотой 50 Гц.
- Мощность, потребляемая шкафом: не превышает 500 ВА.

Диапазон рабочих температур

• минус 10 ÷ +50°C.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Степень защиты: IP65.
- Средняя наработка шкафа на отказ: не менее 35 000 ч.
- По сейсмостойкости шкаф относится к категории II по НП-031-01.

УДГ-03Д

Радиометр бета-излучающих газов

Автоматические измерения концентрации бета-излучающих газов (аргон, криптон, ксенон) в воздухе рабочих помещений и вентиляционных систем.

- Компенсация внешнего гамма-фона.
- Периодическая поверка без демонтажа с помощью образцового бета-источника.

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Детекторы кремниевые 2 шт.
- Расход воздуха: 10 ÷ 100 л/мин

Диапазон рабочих температур

• минус 10 ÷ 55 °C

Диапазон измерения

• $10^4 \div 3,7 \cdot 10^{10} \, \text{BK/M}^3$

Диапазон энергий

• 60 ÷ 3 000 кэВ

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Питание: 9 ÷ 18 В
- Интерфейс связи: RS-485
- Связь с ВУ АСРК реализуется через БОП-1 М

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

• Степень защиты: IP65

Габаритные размеры, масса

• 354×230×203 мм, 23 кг

Нормативные документы

- Номер в госреестре СИ: 51732-12
- Сертификат в системе сертификации ОИАЭ
- Класс безопасности 3H, 4H в соответствии с НП-001-15, НП-016-05, НП-022-2000, НП-033-11

Стандарты

- Физические: МЭК 60761, МЭК 62302
- 9MC: M9K 61010, M9K 61000-6-2
- Сейсмика: МЭК 60980

УДМН-100

Блок детектирования нейтронного излучения

Измерение мощности эквивалента амбиентной дозы H*(10) нейтронного излучения.

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Детектор – сцинтиллятор ZnS(Ag), Li-6

Диапазон измерения

• 0.1 мкЗв/ч ÷ 0.1 Зв/ч

Диапазон энергий • 0.025 эВ ÷ 10.0 МэВ

Диапазон рабочих температур

• минус 40 ÷ +50 °C

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Интерфейсы связи: RS-485
- Связь с ВУ АСРК реализуется через БОП-1М

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

• Степень защиты: IP65

Габаритные размеры, масса

• 428×258×347 мм, 12.4 кг

Нормативные документы

- Номер в Госреестре СИ РФ: 31091-06
- Сертификат в системе сертификации ОИАЭ
- Класс безопасности безопасности 3H, 4H в соответствии с HП-001-15, HП-016-05, HП-033-11

Стандарты

- Физические: МЭК 61005, МЭК 61322
- 9MC: M9K 61010, M9K 61000-6-2
- Сейсмика: МЭК 60980

УДА-1АБ

Радиометр аэрозолей

Автоматические измерения концентрации альфа- и бета-активных аэрозолей в воздухе рабочих помещений и вентиляционных систем.

- Компенсация ДПР радона, торона и внешнего гамма-фона
- Звуковая и световая сигнализация о превышении порогов
- Управление электромагнитными клапанами при работе с внешней магистралью пробоотбора
- Периодическая поверка без демонтажа с помощью образцовых источников

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Детекторы: кремниевые спектрометрические 2 шт. (измерительный и компенсационный)
- Фильтрующие ленты: ЛФАС, FSLW
- Расход ленты при непрерывной работе: 10 м на 50 дней
- Расход воздуха через фильтр: 5 ÷ 60 л/мин
- Диапазон рабочих температур: минус 10 ÷ +55 °C

Диапазон измерения

- Объемной активности альфа-излучателей: $10^{-2} \div 2 \cdot 10^{5} \, \text{Бк/м}^{3}$
- Объемной активности бета-излучателей: $10^{-1} \div 10^7 \, \text{Бк/м}^3$

Диапазон энергий

- Альфа-частиц: 3.0 ÷ 9.0 МэВ
- Бета-частиц: 0.05 ÷ 3.0 МэВ

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Питание: 220 В, 50 Гц
- Интерфейсы связи:
 RS-232, 2×RS-485, Ethernet
- Релейный выход: до 5 шт.
- Выход: 4 ÷ 20 мА (опционально)

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

• Степень защиты: IP65

Габаритные размеры, масса

- Стационарное исполнение: 389×260×304 мм, 15.6 кг
- Мобильное исполнение с насосным блоком БН-01: 595×1054×394 мм, 38 кг

Сигнализация

- Звуковая сигнализация: 80 ÷ 100 dB на расстоянии 1 м
- Световая сигнализация: зеленый, желтый, красный
- Внешний блок сигнализации: БАС

Нормативные документы

- Номер в госреестре СИ: 24548-13
- Сертификат в системе сертификации ОИАЭ
- Класс безопасности 3H, 4H в соответствии с HП-001-15, HП-016-05, HП-033-11

Стандарты

- Физические: МЭК 60761, МЭК 61172
- ЭМС: МЭК 61010, МЭК 61000-6-2
- Сейсмика: IEC 60980

Исполнения

- Стационарное исполнение
- Стационарное исполнение с насосным блоком БН-01
- Мобильное исполнение с насосным блоком БН-01

ДБГ-С11Д

Дозиметр гамма-излучения

Измерение мощности эквивалента амбиентной дозы H*(10) гамма-излучения

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Детектор газоразрядные счетчики
- Диапазон измерения
- ДБГ-С11Д: 0.1 мкЗв/ч ÷ 10 мЗв/ч
- ДБГ-С11Д-01: 0.1 мкЗв/ч ÷ 10 Зв/ч
- ДБГ-С11Д-02: 0.1 мкЗв/ч ÷ 100 Зв/ч
- ДБГ-С11Д-03: 0.1 мкГр/ч ÷ 100 Гр/ч Диапазон энергий
- 0.05 ÷ 3.0 MaB
- Диапазон рабочих температур
- минус 60 ÷ +80 °C

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Питание: 9 ÷ 18 В
- Интерфейсы связи: RS-485, USB
- Связь с ВУ АСРК реализуется через БОП-1М

Механические характеристики

• Степень защиты: IP68

Габаритные размеры, масса

- ДБГ-С11Д: Ø 68×141 мм, 0.65 кг
- ДБГ-С11Д-01: Ø 68×179 мм, 0.7 кг
- ДБГ-С11Д-02: Ø 68×179 мм, 0.7 кг
- ДБГ-С11Д-03: Ø 68×179 мм, 0.7 кг

Нормативные документы

- Номер в Госреестре СИ РФ: 42783-11
- Сертификат в системе сертификации ОИАЭ
- Класс безопасности 3H, 4H в соответствии с HП-001-15, HП-016-05, HП-033-11

Стандарты

- Физические: МЭК 60846, МЭК 60532
- 9MC: M9K 61010, M9K 61000-6-2
- Сейсмика: МЭК 60980

РЗБА-09Д

Установка контроля поверхностной загрязненности персонала

Полный контроль загрязненности с максимальной эффективностью за минимальное время. Простота в эксплуатации, доступная сотрудникам любой квалификации.

НАЗНАЧЕНИЕ

- определение уровня радиоактивного загрязнения поверхности одежды, обуви и кожи;
- измерение плотности потока бета- и альфаизлучающих радионуклидов;
- измерение поверхностной активности радионуклидов Sr-90+Y-90 и Pu-239;
- обнаружение гамма-излучения при контроле персонала;
- сигнализация и контроль прохода персонала при превышении установленных уровней.

СВОЙСТВА

23 стационарных высокочувствительных блока детектирования 465 см² каждый +1 стационарный высокочувствительный блок детектирования 146,4 см² +1 выносной блок детектирования 146,4 см² (опционально: БДЗБ-09Д для бета-излучения или БДЗА-07Д для альфа-излучения);

- оценка загрязненнности всей поверхности тела персонала, включая голову, боковые стороны рук и ног без использования выносных блоков;
- стационарный блок детектирования для контроля уровня бета-излучения мелких предметов и личных вещей;
- проведение полного измерения за минимальное время — не более 10 секунд;
- максимальная простота: голосовые и визуальные подсказки в течение всего процесса измерения;
- голосовая и световая сигнализация, большой сенсорный монитор;
- автоматическая компенсация внешнего гамма-фона при каждом измерении;
- возможность видеофиксации процедуры измерений;
- контроль каждого блока детектирования во время работы, сигнализация о загрязнении и необходимости проведения сервисных работ;
- технические характеристики соответствуют, а по ряду параметров превосходят требования СТО.

УДГ-1Б

Радиометр инертных газов

Автоматические измерения концентрации бетаизлучающих газов (аргон, криптон, ксенон) в воздухе рабочих помещений и вентиляционных систем.

- Компенсация внешнего гамма-фона
- Звуковая и световая сигнализация о превышении порогов
- Периодическая поверка без демонтажа с помощью образцового бета-источника

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Детекторы: кремниевые 2 шт. (измерительный и компенсационный)
- Расход воздуха: 15 ÷ 100 л/мин Диапазон рабочих температур
- минус 10 ÷ 50 °C

Диапазон измерения

• $10^4 \div 3.7 \cdot 10^{10} \, \text{BK/M}^3$

Диапазон энергий

• 0.1 ÷ 3.0 МэВ

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Питание: 220 В, 50 Гц
- Интерфейсы связи: RS-232, 2×RS-485, Ethernet
- Релейный выход: до 3 шт.
- Выход: 4 ÷ 20 мА (опционально)

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Степень защиты: IP65 Габаритные размеры, масса
- Стационарное исполнение: 395×240×304 мм, 18 кг
- Мобильное исполнение с насосным блоком БН-01: 595×1054×394 мм. 42 кг

Сигнализация

- Звуковая сигнализация: 80 ÷ 100 dB на расстоянии 1 м
- Световая сигнализация: зеленый, желтый, красный
- Внешний блок сигнализации БАС

Нормативные документы

- Номер в госреестре СИ: 24525-08
- Сертификат в системе сертификации ОИАЭ
- Класс безопасности 3H, 4H в соответствии с HП-001-15, HП-016-05, HП-033-11

Стандарты

- Физические: МЭК 60761, МЭК 62302
- 9MC: M9K 61010, M9K 61000-6-2
- Сейсмика: МЭК 60980

Исполнения

- Стационарное исполнение
- Стационарное исполнение с насосным блоком БН-01
- Мобильное исполнение с насосным блоком БН-01

УППВМ

Установка для измерения параметров воздушного потока

Измерение линейной скорости потока, температуры и влажности воздуха.

 Определение объемного расхода воздуха в вентсистемах по измерениям линейной скорости потока воздуха с учетом температуры и влажности воздуха.

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Диапазон измерения

- Скорости потока воздуха: 1,0 ÷ 20,0 м/с
- Температуры воздуха: 0 ÷ +80 °C
- Относительной влажности воздуха: 10 ÷ 95 %

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Питание: 220 В, 50 Гц
- Интерфейсы связи: RS-232, RS-485, Ethernet

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Степень защиты:

• БСПП-1ст, БСПП-1тв, БОП-1с: IP65

Габаритные размеры, масса

- Первичный преобразователь скорости ПП-ст: 60×38×136 мм, 0.15 кг
- Блок сопряжения БСПП-1ст: 125×155×73 мм, 0.7 кг
- Измерительный преобразователь температуры и влажности ИПТВ: 333×100×60 мм, 0.7 кг
- Блок сопряжения БСПП-1тв: 125×155×73 мм, 0.7 кг
- Блок обработки и передачи данных БОП-1с: 280×233×111 мм, 8 кг

Нормативные документы

- Номер в Госреестре СИ: 27027-09
- Сертификат в системе сертификации ОИАЭ
- Класс безопасности 3H, 4H в соответствии с HП-001-15, HП-016-05, HП-033-11

Стандарты

Физические: ИСО 2889

• 9MC: M9K 61010, M9K 61000-6-2

Сейсмика: МЭК 60980

20 CPK «ΦΕΗΙΚΟ»

БДВВ-16Д

Блок дискретного ввода

Считывание состояния независимых дискретных входных сигналов типа «сухой контакт» и передача сообщений об их состоянии во внешнюю информационную линию связи по каналу, организованному на базе интерфейса Ethernet.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Считывание состояния дискретных входных сигналов типа «сухой контакт» в количестве не более 20 шт
- Сопротивление сухого контакта, соответствующее состоянию:
 - «Замкнуто» не более 520 Ом
 - «Разомкнуто» не менее 5440 Ом
- Максимальный ток опроса 35 мА
- Напряжение опроса на сухом контакте 12 В

- Время: не более 1 мин
- Время работы: круглосуточно
- Электропитание: 220 В, 50 Гц
- Потребляемая мощность: не более 50 ВА Рабочие условия эксплуатации
- диапазон рабочих температур: минус 40 ÷ + 50 °C
- относительная влажность окружающего воздуха: до 98 % при +35 °C и более низких температурах без конденсации влаги
- Степень защиты: IP65
- Габаритные размеры: не более 400×380×210 мм
- Масса: не более 20 кг

УДГП-01

Установка контроля протечек парогенератора по N-16

Автоматические измерения объемных активностей радионуклидов в различных технологических средах: жидкости, паре, пульпе и др.

- Два независимых измерительных канала
- Гамма-спектрометрия
- Контроль активности азота-16
- Проверка работоспособности с помощью интегрированного источника.
- Звуковая и световая сигнализация о превышении порогов
- Периодическая поверка без демонтажа с помощью образцового источника

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Детектор: сцинтиллятор Csl Ø 40×100 мм
 Диапазон измерения объемной активности
- Высокоэнергетических нуклидов, в т.ч. 16 N: $1.0\cdot10^3 \div 3.7\cdot10^8$ Бк/м 3
- Низкоэнергетических гамма-излучающих нуклидов: $4\cdot10^2 \div 4\cdot10^8$ Бк/м 3

Диапазон энергий

- Низкоэнергетических гамма-излучающих нуклидов: 50 ÷ 1500 кэВ
- Высокоэнергетических гамма-излучающих нуклидов, в т.ч. ¹⁶N: 5000 ÷ 7200 кэВ

Диапазон рабочих температур

- Блок детектирования: минус 10 ÷ +80 °C
- Блок обработки и передачи данных БОП-1сп: минус 10 ÷ +55 °C

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Питание: 220 В, 50 Гц
- Интерфейсы связи: RS-232, RS-485, Ethernet
- Релейный выход
- Выход: 4 ÷ 20 мА (опционально)

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

• Степень защиты: IP65

Габаритные размеры, масса

- Блок детектирования:
- БДЕГ-03 40×60: Ø 60×360 мм, 1.4 кг
- БДЕГ-03 40×100: Ø 62×355 мм, 1.7 кг
- БОП-1cп: 298×220×114 мм, 4.3 кг
- Коллиматор: Ø 350×455 мм, 150 кг
- Проточная камера: 1700×800×900 мм, 410 кг Нормативные документы
- Номер в госреестре СИ: 27536-15
- Сертификат в системе сертификации ОИАЭ
- Класс безопасности 3H, 4H в соответствии с HП-001-15, HП-016-05, HП-033-11

Стандарты

- Физические: МЭК 60768
- ЭМС: МЭК 61010. МЭК 61000-6-2
- Сейсмика: МЭК 60980

Сигнализация

- Звуковая сигнализация: 80 ÷ 100 dB на расстоянии 1 м
- Световая сигнализация: зеленый, желтый, красный
- Внешний блок сигнализации БАС

БДПН-100

Блок детектирования плотности потока нейтронов

Блок детектирования для измерения плотности потока промежуточных нейтронов.

ОСОБЕННОСТИ

- конструктивное исполнение и характеристики блока были разработаны с учетом применения на судах с ЯСУ;
- блок состоит из блока детектирования тепловых нейтронов, помещенного в защиту-замедлитель;
- принцип действия заключается в измерении плотности потока промежуточных нейтронов от источника нейтронов (трубы с водой первого контура) с отсечением фонового нейтронного излучения в месте установки блока (аппаратное помещение защитной оболочки реакторной установки);

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Тип детектора: счетчик на основе ³Не
- Диапазон измерения плотности потока промежуточных нейтронов: 3 ÷ 3·10⁵ нейтр·см⁻²·с¹

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Напряжение питания постоянного тока: 9 ÷ 18 В
- Потребляемый ток: не более 400 мА

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Габаритные размеры: 650х250х266 мм
- Macca: 33 кг

Рабочие условия эксплуатации

- Диапазон рабочих температур: минус 10 ÷ +60 °C
- предельное значение относительной влажности: до 98 % при 35 °C
- Степень защиты: IP65

Нормативные документы

- Номер в госреестре СИ: 65559-16
- Сертификат соответствия ОИАЭ
- Класс безопасности:
- 3Н, 4Н по НП-001-15
- 3 по НП-022-2000

Стандарты

- Физические: МЭК60768, 62438, 62534
- Сейсмика: МЭК 60980
- 9MC: M9K 61010, M9K 61000-6-2

УДИ-1Б

Радиометр йода

Автоматические измерения концентрации радионуклидов йода в воздухе рабочих помещений и вентиляционных систем.

- Измерения объемных активностей радионуклидов I^{131} , I^{132} , I^{133} , I^{135} в воздухе
- Гамма-спектрометрия.
- Компенсация внешнего гамма-фона.
- Проверка работоспособности с помощью имплантированного в детектор источника Am-241.
- Периодическая поверка без демонтажа с помощью образцового источника.

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Детекторы: сцинтилляционные спектрометрические CsI(Tl) 2 шт. (измерительный и компенсационный)
- Фильтр: кассета на основе химического сорбента.
- Расход воздуха через фильтр: 5 ÷ 40 л/мин.

Диапазон рабочих температур

• минус 10 ÷ +55 °C.

Диапазон измерения

- в режиме накопления за 24 часа: $3 \cdot 10^{-2} \div 3,7 \cdot 10^{6} \, \text{Бк/м}^{3}$.
- в режиме наблюдения: 3,7 \div 3,7 \cdot 10 6 Бк/м 3 .

Диапазон энергий

• 60 ÷ 3000 кэВ.

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Питание: 220 В, 50 Гц.
- Интерфейсы связи: RS-232, 2×RS-485, Ethernet.
- Релейный выход: до 3 шт.
- Выход: 4 ÷ 20 мА (опционально).

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

• Степень защиты: IP65.

Габаритные размеры, масса

- Стационарное исполнение: 437×307×474 мм, 30 кг.
- Мобильное исполнение с насосным блоком БН-01: 595×1054×394 мм, 52 кг

Сигнализация

- Звуковая сигнализация: 80 ÷ 100 dB на расстоянии 1 м.
- Световая сигнализация: зеленый, желтый, красный.
- Внешний блок сигнализации БАС.

Нормативные документы

- Номер в госреестре СИ: 27535-14.
- Сертификат в системе сертификации ОИАЭ.
- Класс безопасности 3H, 4H в соответствии с HП-001-15, HП-016-05, HП-033-11.

Стандарты

- Физические: МЭК 60761, МЭК 61171.
- 9MC: M9K 61010, M9K 61000-6-2.
- Сейсмика: МЭК 60980.

Исполнения

- Стационарное исполнение.
- Стационарное исполнение с насосным блоком БН-01.
- Мобильное исполнение с насосным блоком БН-01.

УДГП-01

Установка радиометрическая

Установка обеспечивает определение объемных активностей гамма-излучающих радионуклидов в различных технологических средах и передачу спектрометрической информации по локальной сети.

НАЗНАЧЕНИЕ

 измерение объемной активности гамма-излучающих радионуклидов в технологических средах.

СВОЙСТВА

- проверка работоспособности с помощью интегрированного источника;
- интерфейс связи RS-232, RS-485, Ethernet;
- звуковая и световая сигнализация превышения устанавливаемых порогов;
- настройка с помощью переносного ПК;
- наличие выхода «сухой контакт»;
- возможность подключения блока аварийной сигнализации БАС;
- межповерочный интервал 2 года.

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

• Тип детектора: сцинтилляционный на основе бромида лантана

Диапазон измерений объемной активности

гамма-излучающих нуклидов
с использованием погружного модуля
детектора или защитного тубуса со стенкой
из стали не толще 3 мм при погружении
в воду так, чтобы расстояние от центра
детектора до любого края жидкости

было не менее 200 мм: $3,0\cdot10^4 \div 6,0\cdot10^9$ Бк/м³.

Диапазон энергий регистрации гамма-квантов

- при измерении объемной активности низкоэнергетических гамма-излучающих нуклидов: 50 ÷ 3000 кэВ;
- пределы допускаемой основной относительной погрешности измерений объемной активности ¹³⁷Cs: ±20 %.

Диапазон рабочих температур

- БДЕГ-03 минус 10 ÷ +80 °C.
- БДЕГ-05 минус 10 ÷ +55 °C.
- Категория сейсмостойкости по НП-031: I, группа A.
- Устойчивость к воздействию электромагнитных помех согласно ГОСТ 32137 группы исп. IV, критерий А.

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

• Питание: 220 В, 50 Гц.

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Степень защиты: IP65.
- Время непрерывной работы: не менее 24 ч.
- Наработка на отказ установки: 35 000 ч.
- По влиянию на безопасность УДГП-01 относятся к элементам нормальной эксплуатации класса безопасности 3H, 4H в соответствии с НП-001, НП-016 (ОПБ ОЯТЦ), НП-033.

Стандарты

• IEC 60951-4.

БАС-1С

Блок аварийной сигнализации

Звуковая и световая сигнализация о превышении порогов оборудования АСРК.

- Звуковая сигнализация: 85 ÷ 100 дБА на расстоянии 1 м.
- Световая сигнализация: красный, желтый, зеленый.

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Длина кабеля связи до 1200 м Диапазон рабочих температур
- минус 10 ÷ +50 °C

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

• Питание: 220 В, 50 Гц

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Степень защиты: IP65
- Габаритные размеры, масса • 108×160×472 мм, 1.8 кг
- Нормативные документы
- Сертификат в системе сертификации ОИАЭ
- Класс безопасности 3H, 4H в соответствии с HП-001-15, HП-016-05, HП-033-11

Стандарты

- 9MC: M9K 61010, M9K 61000-6-2
- Сейсмика: МЭК 60980

26 CPK «ΦΕΗΙΚΟ»

УМФ-2000

Альфа-бета радиометр для измерения малых активностей

Низкофоновый альфа-бета радиометр с кремниевым детектором, широко используемый для измерений малых активностей. Рекомендуется для измерения суммарной альфа- и бета-активности природных и питьевых вод.

НАЗНАЧЕНИЕ

- измерение суммарной активности альфаизлучающих нуклидов в «толстых» и «тонких» счетных образцах проб объектов окружающей среды;
- измерение суммарной активности бетаизлучающих нуклидов в счетных образцах проб пищевых продуктов, почвы, воды, на воздушных фильтрах и проб, полученных методами селективной радиохимической экстракции;
- измерение альфа-активности нуклидов в счетных образцах, полученных после селективной радиохимической экстракции (при наличии методик).

СВОЙСТВА

- одновременное измерение альфа- и бета-активностей счетного образца;
- применение кремниевого ионнолегированного детектора площадью 500 мм² или 1000 мм²;
- активная защита от фонового излучения с использованием газоразрядных счетчиков и схемы антисовпадений;
- пассивная свинцовая защита от фонового излучения;

- выход спектрометрического сигнала;
- определение:
 - в почвах: Po-210, Sr-90;
 - в водах: Po-210, Ra-226, Ra-228;
- возможность альфа-спектрометрических измерений активности изотопов U, Th, Pu, Am в почвах и водах.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Детектор полупроводниковый кремниевый Площадь детектора
- основное исполнение, исполнение 02 - 500 мм²
- исполнение 01 1000 мм²

Диапазон измеряемых активностей

- альфа-излучающих нуклидов 0,01 ÷ 1000 Бк
- бета-излучающих нуклидов 0,1 ÷ 3000 Бк

Диапазон энергий регистрируемого

- альфа-излучения 3500 ÷ 10000 кэВ
- бета-излучения 50 ÷ 3500 кэВ

Пределы допускаемой основной относительной погрешности

• измерений активности: ±15 %

Габаритные размеры, масса

- основное исполнение, исполнение 02: 336,5×286×190 мм, 23,0 кг
- исполнение 01: 334×286×190 мм, 22,3 кг

Нормативные документы

Номер в госреестре СИ: 16297-18

УИМ-МД

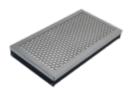
Комплекс измерительный универсальный

Стационарный комплекс для контроля различных параметров радиационной обстановки в зависимости от типа подключаемых блоков детектирования. Как установка контроля загрязненности персонала, может использоваться для оценки альфа-, бета- и гамма-загрязненности поверхностей объектов, одежды персонала и мелких предметов.

НАЗНАЧЕНИЕ

- измерение:
 - плотности потока альфа-, бета-излучений;
- поверхностной активности радионуклидов ²³⁹Pu и ⁹⁰Sr+⁹⁰Y;
- сигнализация о превышении установленных пороговых значений.

СВОЙСТВА


- интеллектуальные блоки детектирования;
- цветной ТFТ экран пульта для отображения результатов измерений и состояния блоков детектирования;
- световая и звуковая сигнализация о превышении установленных пороговых значений для каждого блока детектирования;

- установка двух пороговых уровней сигнализации (предупредительного и аварийного) для каждого блока детектирования;
- возможность установки блока детектирования на расстоянии до 500 м от пульта;
- возможность подключения внешних сигнальных или исполнительных устройств (разъем «сухой контакт»);
- размещение пульта УИМ-3Д на столе или на стене с помощью устройства для крепления;
- для монтажа блоков детектирования БДЗА-09Д, БДЗБ-18Д могут использоваться любые кронштейны, соответствующие стандарту VESA 100×100;
- контроль альфа-, бета и гаммазагрязненности ног (обуви).

Блоки детектирования

БДЗА-07Д

БДЗА-09Д

БДЗБ-19Д

БДЗБ-18Д

СОСТАВ КОМПЛЕКСА ДЛЯ КОНТРОЛЯ ЗАГРЯЗНЕННОСТЕЙ

- пульт универсальный двухканальный УИМ-3Д;
- блок детектирования БДЗА-07Д: 146,4 см²;
- блок детектирования БДЗА-09Д: 465 cм²;
- блок детектирования БДЗБ-19Д: 146,4 см²;
- блок детектирования БДЗБ-18Д: 465 см².

Габаритные размеры, масса

• 108×160×472 мм, 1.8 кг

Нормативные документы

- Сертификат в системе сертификации ОИАЭ
- Класс безопасности 3H, 4H в соответствии с HП-001-15, HП-016-05, HП-033-11

Стандарты

- 3MC: M3K 61010, M3K 61000-6-2
- Сейсмика: МЭК 60980

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Плотность потока альфа-излучения

• $0.1 \div 1.10^5 \text{ MUH}^{-1} \cdot \text{CM}^{-2}$.

Диапазон измерений поверхностной активности радионуклида 239Pu

• $0.1 \cdot 10^{-2} \div 3.4 \cdot 10^{3} \, \text{BK/cm}^{2}$.

Плотность потока бета-излучения

- БДЗБ-18Д: 1,0 ÷ 5·10⁵ мин⁻¹·см⁻²;
- БДЗБ-19Д: $1.0 \div 1.10^6$ мин⁻¹ см⁻².

Диапазон измерений поверхностной активности радионуклида ⁹⁰Sr+⁹⁰Y

- БДЗБ-18Д: 3,4·10⁻² ÷ 1,7·10⁴ Бк/см²;
- БДЗБ-19Д: 3,4·10⁻² ÷ 3,4·10⁴ Бк/см².

Количество одновременно подключаемых блоков детектирования

• 2.

Время установления рабочего режима, не более

10 мин.

Вид сигнализации

• световая, звуковая, цветовая.

СТАНДАРТЫ

• IEC 61098.

СЕРТИФИКАТЫ

- декларация EAC: EAЭC N RU Д-RU. PA05.B.88170/22;
- об утверждении типа средств измерений № 87194-22 Комплексы измерительные универсальные УИМ-МД.

МКС-17Д «ЗЯБЛИК»

Дозиметр-радиометр

Универсальный дозиметр-радиометр с возможностью беспроводной работы пульта с блоками детектирования и компьютером. Блоки детектирования БДЗА-Р5Д и БДЗБ-Р5Д позволяют использовать «Зяблик» в качестве прибора контроля загрязненности.

НАЗНАЧЕНИЕ

- измерение плотности потока и флюенса альфа- и бета-излучений;
- измерение поверхностной альфаи бета-активности;
- измерение мощности амбиентного эквивалента дозы (МАЭД) и амбиентного эквивалента дозы (АЭД) фотонного излучения;
- измерение мощности амбиентного эквивалента дозы (МАЭД) нейтронного излучения;
- оперативный поиск источников ионизирующих излучений и радиоактивных материалов.

СВОЙСТВА

- высокочувствительные сцинтилляционные блоки детектирования большой площади;
- одновременная индикация плотности потока бета-излучения и МАЭД гамма-излучения при использовании БДЗБ-Р5Д;
- радиоканал или проводной интерфейс для связи блока детектирования с пультом;
- связь с ПЭВМ по радиоканалу;

- яркий, контрастный дисплей с графическим интерфейсом;
- возможность подключения наушников;
- межповерочный интервал 2 года.

ОБШИЕ ХАРАКТЕРИСТИКИ

- Время установления рабочего режима, не более: 10 с.
- Время непрерывной работы от полностью заряженных аккумуляторов в нормальных условиях, не менее: 18 ч.
- Объем энергонезависимой памяти: 715 измерений.

Габаритные размеры (ГхШхВ), масса, не более

- пульт УПИ-01Д: 132×28×89 мм, 0,24 кг;
- блок БДЗА-Р5Д: 180×180×176 мм, 1,55 кг;
- блок БДЗБ-Р5Д: 180×180×176 мм, 1,79 кг.
- блок БДКН-Р5Д в нейтронном замедлителе с МБС-03: 430×340×250 мм, 9,0 кг

СТАНДАРТЫ

• IEC 60325.

СЕРТИФИКАТЫ

- номер в госреестре РФ: 75812-19;
- номер в госреестре Казахстана: KZ.02.03.00297-2020/75812-19;
- декларация EAC: EAЭC N RU Д-RU. MЛ06.B.00105/20;
- сертификат CE: SZU-22MA19170-1.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Блок детектирования БДЗА-Р5Д

Диапазон энергий регистрируемого альфа-излучения

• 4,0 ÷ 8,0 MaB.

Диапазон измерений плотности потока альфа-излучения

• $0.1 \div 1.0 \cdot 10^5 \text{ MUH}^{-1} \text{CM}^{-2}$.

Диапазон измерений флюенса альфаизлучения (при плотности потока, лежащей в границах диапазона измерений)

• $0.5 \div 3.0 \cdot 10^5 \text{ cm}^{-2}$.

Диапазон измерений поверхностной активности радионуклида ²³⁹Pu

• $3.4 \cdot 10^{-3} \div 3.4 \cdot 10^{3} \, \text{ FK/cm}^{2}$.

Чувствительность к альфа-излучению радионуклида ²³⁹Pu, не менее

• 1,2 (имп/с)/(мин⁻¹·см⁻²).

Блок детектирования БДЗБ-Р5Д

Диапазон средних энергий регистрируемого бета-излучения

• 0,049 ÷ 1,508 МэВ.

Диапазон максимальных энергий регистрируемого бета-излучения

• 0,156 ÷ 3,54 МэВ.

Диапазон энергий регистрируемого фотонного излучения

• 0,05 ÷ 3,0 MaB.

Диапазон измерений плотности потока бета-излучения

• 1 ÷ 1,0·10⁶ мин⁻¹см⁻².

Диапазон измерений флюенса бетаизлучения (при плотности потока, лежащей в границах диапазона измерений)

• $0.5 \div 3.0 \cdot 10^6 \text{ cm}^{-2}$.

Диапазон измерений поверхностной активности ⁹⁰Sr+⁹⁰Y

• $3,4\cdot10^{-2} \div 4,0\cdot10^{4} \, \text{BK/cm}^{2}$.

Чувствительность к бета-излучению радионуклида 90Sr+90Y, не менее

• 2,0 (имп/с)/(мин⁻¹·см⁻²).

Блок детектирования БДКГ-Р20Д

Диапазон энергий регистрируемого фотонного излучения

• 0,05 ÷ 3,0 MaB.

Диапазон измерений мощности амбиентного эквивалента дозы (МАЭД) фотонного излучения Н* (10)

• 0,1 мкЗв/ч ÷ 10,0 Зв/ч.

Диапазон измерений АЭД фотонного излучения Н* (10)

• 0,1 мкЗв ÷ 10,0 Зв.

Пределы допускаемой основной относительной погрешности измерений МАЭД и АЭД фотонного излучения

+13 %.

Чувствительность к гамма-излучению с энергией 0,662 МэВ (137Cs)

МАЭД 0,1 мкЗв·ч⁻¹ ÷ 1 мЗв·ч⁻¹:
 500 (имп/с)/(мкЗв/ч).

МАЭД 1 мЗв·ч⁻¹ ÷ 10 Зв·ч⁻¹:
 4 (имп/с)/(мкЗв/ч).

Блок детектирования БДКН-Р5Д

Диапазон энергий регистрируемого нейтронного излучения

• 0,025 эВ ÷ 10 МэВ.

Диапазон измерений мощности амбиентного эквивалента дозы (МАЭД) нейтронного излучения

- 0,1 мкЗв/ч ÷ 0,1 Зв/ч. Анизотропия чувствительности для излучения источника Pu-Be
- ±35 %.
 Пределы допускаемой основной относительной погрешности измерений МАЭД нейтронного излучения

• ±25%

ИСПОЛНЕНИЕ

- Для работы в качестве прибора контроля загрязненности МКС-17Д комплектуется блоками детектирования:
- БДЗБ-Р5Д измерение плотности потока, флюенса и поверхностной активности бета-излучения;
- БДЗА-Р5Д измерение плотности потока, флюенса и поверхностной активности альфа-излучения.
- Опционально комплектуется приспособлением для контроля альфаи бета-загрязненности плоских поверхностей (полы, стены).

БДЗБ-Р5Д

У3С-01Д

Считывающее устройство индивидуальных дозиметров

Автоматизация индивидуального мониторинга с использованием дозиметров ДВС-02Д и ДКГ-05Д.

СВОЙСТВА

- Возможность напольного, настольного и настенного размещения
- Сенсорный экран и оптимизированное под него программное обеспечение
- Мнемоническая и звуковая сигнализация о состоянии считывателя
- Автоматический контроль обмена данными со считывателем

СЧИТЫВАТЕЛЬ ОБЕСПЕЧИВАЕТ

- сбор, обработку, хранение, отображение текущей информации от дозиметров;
- ведение базы данных дозиметров и их состояния, пользователей и их сопроводительной информации, в том числе значений полученных доз.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

 Обмен данными между УЗС-01Д и дозиметром: ИК

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Питание: 220 В, 50 Гц
- Потребляемая мощность: 300 ВА

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Степень защиты: IP30
- Диапазон рабочих температур
- +5 ÷ +50 °C
- Относительная влажность: до 80 % при +35 °C Исполнение
- напольное, настольное, настенное Габаритные размеры, масса
- 600×500×355 мм, 24 кг

ДКГ-05Д

Индивидуальный дозиметр гамма-излучения

НАЗНАЧЕНИЕ

- измерение индивидуального эквивалента дозы (ИЭД);
- измерение мощности индивидуального эквивалента дозы (МИЭД).

СВОЙСТВА

- прошел испытания в соответствии со стандартом Международной электротехнической комиссии МЭК 61526 (Второе издание 2005-02) «Индивидуальные дозиметры с непосредственным считыванием показаний эквивалента дозы»;
- сохранение в энергонезависимой памяти до 1900 историй накопления дозы;
- самотестирование электрической схемы и детекторов;
- подсветка дисплея;
- звуковая и световая сигнализация при: превышении пороговых уровней ИЭД (предупредительного и аварийного) и МИЭД, снижении напряжения питания, отрицательных результатах самотестирования;
- плавная установка порогов звуковой и световой сигнализации по ИЭД и МИЭД во всем диапазоне измерения;
- двусторонняя инфракрасная связь со считывающим устройством УС-05 при автономном использовании или с УЗС-01Д при работе в составе автоматизированной системы ИДК предприятия;

- связь с ПЭВМ по интерфейсу USB (УС-05-01 или УС-05Б-01) или Ethernet (УЗС-01Д);
- выключение, очистка памяти, настройка осуществляются с помощью ПЭВМ и программного обеспечения. Персонал без права доступа не может вмешаться в работу дозиметра;
- 2 типа питания: от незаряжаемого источника питания или от аккумулятора;
- зарядное устройство на 1, 28 или на 56 дозиметров с аккумуляторами;
- функция «интеллектуального» заряда, продлевающая срок службы аккумуляторов до 7 лет.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

• Детекторы – кремниевые полупроводниковые.

Диапазон измерения

- ИЭД: 0,1 мкЗв ÷ 15 Зв
- МИЭД: 1 мкЗв/ч ÷ 10 Зв/ч

Диапазон энергий

• 0,05 ÷ 3,0 M₃B

Предел допускаемой основной относительной погрешности измерений

- ИЭД гамма-излучения ±(15+10/H) %
- МИЭД гамма-излучения ±(15+40/H) %

Звуковая и световая сигнализация

- превышение системных порогов сигнализации;
- превышение пределов индикации ИЭД 42,9 Зв и МИЭД – 42,9 Зв·ч-1
- отрицательных результатов самодиагностики;
- разряда элементов питания.

Звуковая сигнализация

- не менее 80 дБ на расстоянии 40 см Световая сигнализация
- мигающий светодиод

Время измерения мощности дозы

• от 1 до 255 сек (уменьшается с ростом мощности дозы)

Память

1900 результатов

Срок хранения информации в памяти дозиметра при разряде и отсутствии источника питания:

5 лет

Установка порогов

• во всем диапазоне измерения ИЭД с шагом 1 мкЗв и МИЭД с шагом 1 мкЗв·ч-1

Тип связи считывающего устройства с компьютером

- считывающее устройство УС-05-01 (УС-05Б-01): USB
- считывающее устройство УЗС-01Д: Ethernet

Обмен информацией дозиметра со считывающим устройством

• инфракрасный канал

Диапазон рабочих температур

• минус 20 ÷ +45 °C

Влажность

• до 98 % при температуре +35 °C Степень защиты дозиметра

• IP65

Время непрерывной работы

- без заряда аккумулятора не менее 600 ч
- без замены элемента питания не менее 1000 ч

Габаритные размеры, масса

• 47×26×87 (с клипсой) мм, 0,1 кг (включая источник питания)

Конструктивное исполнение

 герметичный корпус из ударопрочной пластмассы с клипсой для крепления в нагрудном кармане

Нормативные документы

- Номер в госреестре СИ: 23416-08
- Сертификат в системе сертификации ОИАЭ

Стандарты

Физические: МЭК 61526

ДВС-02Д

Индивидуальный дозиметр гамма и нейтронного излучения

ХАРАКТЕРИСТИКИ

- Измерение индивидуального эквивалента дозы (ИЭД) смешанного гамма-нейтронного излучения;
- Измерение индивидуального эквивалента дозы (ИЭД) нейтронного излучения;
- измерение мощности индивидуального эквивалента дозы (МИЭД) смешанного гамма-нейтронного излучения.

СВОЙСТВА

- Возможность использования дозиметров без предварительного снятия спектров нейтронного излучения на рабочих местах;
- Суммирование гамма- и нейтронной компонент в смешанном поле и установление пороговых значений для ИЭД и МИЭД смешанного гамма-нейтронного излучения;
- Запоминание в энергонезависимой памяти до 900 историй накопления (ИЭД) смешанного гамма-нейтронного излучения и до 300 историй накопления (ИЭД) нейтронного излучения;
- Индикация на дисплее значения ИЭД смешанного гамма-нейтронного излучения или ИЭД нейтронного излучения;
- Двусторонняя инфракрасная связь со считывающим устройством либо с IRDA портом ПЭВМ;

- Выключение, очистка памяти, настройка могут осуществляться программно с помощью компьютера для того, чтобы персонал без права доступа не мог вмешаться в работу дозиметра;
- Плавная установка порогов звуковой и световой сигнализации по ИЭД и МИЭД во всем диапазоне измерения;
- Самотестирование электрической схемы и детекторов;
- Подсветка дисплея;
- Функция «интеллектуального» заряда, продлевающая срок службы аккумуляторовдо 7 лет.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Детекторы

• кремниевые полупроводниковые

Диапазон измерения дозы

- гамма излучения (в диапазоне МИЭД гамма-излучения 1 мкЗв/ч ÷ 10 Зв/ч)
- 1 мкЗв ÷ 15 Зв
- нейтронного излучения (в диапазоне МИЭД нейтронного излучения 1 мкЗв/ч ÷ 2 Зв/ч)
- 20 мкЗв ÷ 15 Зв

Диапазон энергий регистрируемого

- гамма-излучения: 0,05 ÷ 6,0 МэВ
- нейтронного излучения: 0,025 эВ ÷ 20 МэВ

Зб СРК «ФЕНИКС»

Звуковая и световая сигнализация

- превышения системных порогов сигнализации;
- превышения пределов индикации ИЭД 20 мЗв и МИЭД – 100 мЗв·ч¹
- отрицательных результатов самодиагностики;
- разряда элементов питания ниже 3,52 В.

Звуковая сигнализация

• не менее 80 дБ на расстоянии 40 см

Световая сигнализация

• мигающий светодиод

Время измерения мощности дозы

• от 1 до 255 сек (уменьшается с ростом мощности дозы)

Память

900 результатов

Установка порогов

 во всем диапазоне измерения ИЭД с шагом 1 мкЗв и МИЭД с шагом 1 мкЗв·ч¹

Тип связи считывающего устройства с компьютером

- считывающее устройство УС-05-01: USB
- считывающее устройство УЗС-01Д: Ethernet

Обмен информацией дозиметра со считывающим устройством

• инфракрасный канал

Диапазон рабочих температур

• минус 20 ÷ +50 °C

Влажность

• до 90 % при температуре +30 °C

Степень защиты дозиметра

• IP65

Питание

 встроенный никель-металл-гидридный аккумулятор

Время непрерывной работы

• без подзарядки аккумулятора не менее 200 ч

Габаритные размеры, масса

• 87×47×28 (с клипсой) мм, 0,08 кг

Конструктивное исполнение

 герметичный корпус из ударопрочной пластмассы с клипсой для крепления в нагрудном кармане

Нормативные документы

- Номер в госреестре СИ: 50800-12
- Сертификат в системе сертификации ОИАЭ

Стандарты

Физические: МЭК 61526

ОБОРУДОВАНИЕ ПРОБООТБОРНЫХ ЛИНИЙ

Лицевая панель **ЦПРК** с кнопками управления продувкой

Реле расхода

Реле расхода формирует дискретный сигнал в случае наличия/отсутствия в контролируемой магистрали расхода воздуха.

ПУПР

Пульт управления побудителями расхода

ПУПР обеспечивает управление и контроль состояния частотных преобразователей и вентиляторов.

ШУП

Шкаф управления продувкой

ШУП обеспечивает управление электромагнитными клапанами для обеспечения продувки ветвей ГАК чистым воздухом.

Побудитель расхода

Побудитель расхода обеспечивает расход воздуха в пробоотборных магистралях системы ГАК.

З8 СРК «ФЕНИКС»

СИСТЕМА ПИТАНИЯ СРК «ФЕНИКС»

YBP

Устройство ввода резерва

УВР обеспечивает:

- автоматическое переключение основного/резервного входных фидеров электропитания;
- подключение изолирующего трансформатора (ИСТР);
- подключение одного или двух источников бесперебойного питания.

ИБП

Источник бесперебойного питания

ИБП обеспечивает электропитание СРК в течение не менее 30 мин.

ЩП

Щит питания

ЩП обеспечивает распределение питания от входного фидера на 32 элемента СРК.

ИСТР

Изолирующий трансформатор

ИСТР обеспечивает электропитание СРК 220 В, 50Гц, не имеющее гальванической связи с судовой трехфазной трехпроводной изолированной сетью 380 В, 50 Гц.

БСТД

Блок сопряжения тяжелых дверей

Регистрация состояния независимых дискретных входных сигналов типа «сухой контакт» и передача сообщений об их состоянии во внешнюю информационную линию связи по каналу, организованному на базе интерфейса Ethernet.

БСТД обеспечивает электропитание сопряженного оборудования.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Считывание состояния дискретных входных сигналов типа «сухой контакт» в количестве не более 40 шт
- Сопротивление сухого контакта, соответствующее состоянию:
 - «Замкнуто» не более 520 Ом
 - «Разомкнуто» не менее 5440 Ом
- Максимальный ток опроса 35 мА
- Напряжение опроса на сухом контакт: 12 В

- Время установления рабочего режима: не более 1 мин
- Время работы: круглосуточно
- Электропитание: 220 В, 50 Гц
- Потребляемая мощность не более 50 ВА
- Обеспечивает электропитание сопряженного оборудования постоянным током с напряжением: 24В.

Рабочие условия эксплуатации

- диапазон рабочих температур: минус 40 ÷ +50 °C
- относительная влажность окружающего воздуха: до 98 % при +35 °C и более низких температурах без конденсации влаги
- Степень защиты: IP65
- Габаритные размеры: не более 860×760×355 мм
- Macca: 60 кг

40 CPK «ΦΕΗΝΚC»

Тел: +7 495 777-84-85 Факс: +7 495 742-50-84

